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Abstract

Clusters of SMP (Symmetric Multi-Processors) nogesvide support for a wide
range of parallel programming paradigms. The shadelitess space within each node
is suitable for OpenMP parallelization. Messagesjpascan be employed within and
across the nodes of a cluster. Multiple levels afaplelism can be achieved by
combining message passing and OpenMP parallelizatwhich programming
paradigm is the best will depend on the naturehefdiven problem, the hardware
components of the cluster, the network, and thélabla software. In this study we
compare the performance of different implementatioh the same Computational
Fluid Dynamics (CFD) benchmark application, usihg same numerical algorithm
but employing different programming paradigms.

1. Introduction

With the advent of parallel hardware and softwaehhologies users are faced with the
challenge of choosing a programming paradigm begéd for the underlying computer
architecture. With the current trend in parallelmputer architectures shifting towards
clusters of shared memory symmetric multi-process(BMPs) parallel programming
techniques have evolved to support parallelism beyosingle level.

Parallel programming within one SMP node can tateanatage of the globally shared
address space. Compilers for shared memory artimiéscusually support multi-threaded
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execution of a program. Loop level parallelism banexploited by using compiler directives
such as those defined in the OpenMP standard [penfIP provides a fork-and-join
execution model in which a program begins execu#iera single process or thread. This
thread executes sequentially until a parallelizatioective for a parallel region is found. At
this time, the thread creates a team of threadbaoodmes the master thread of the new team.
All threads execute the statements until the endthef parallel region. Work-sharing
directives are provided to divide the executiontloé enclosed code region among the
threads. All threads need to synchronize at theadmuhrallel constructs. The advantage of
OpenMP is that an existing code can be easily ledied by placing OpenMP directives
around time consuming loops which do not contaita dlependences, leaving the source
code unchanged. The disadvantage is that it isay for the user to optimize workflow and
memory access.

On an SMP cluster the message passing programranagligm can be employed within
and across several nodes. The Message PassintadetédMPI) [5] is a widely accepted
standard for writing message passing programs. pi®lides the user with a programming
model where processes communicate with other psesdsy calling library routines to send
and receive messages. The advantage of the MPigonoging model is, the user’'s complete
control over data distribution and process syndaeiion, permitting the optimization of
data locality and workflow. The disadvantage ig thasting sequential applications require a
fair amount of restructuring for parallelizationsea on MPI. The MPI and OpenMP
programming models can be combined into a hybridgigm to exploit parallelism beyond
a single level. The main thrust of the hybrid petgbaradigm is to combine process level
coarse-grain parallelism, such as domain decomposaind fine-grain parallelism on a loop
level, which is achieved by compiler directiveseThybrid approach is suitable for clusters
of SMP nodes where MPI is needed for parallelismssgnodes and OpenMP can be used to
exploit loop level parallelism within a node.

In this study we will compare different programmiparadigms for the parallelization of
a selected benchmark application on a cluster oP Siddes. We compare the timings of
different implementations of the same CFD benchmegpklication employing the same
numerical algorithm on a cluster of Sun Fire SMide® The rest of the paper is structured as
follows: We describe our compute platform in satt®) the different implementations of our
benchmark code are described in section 3, anpén®rmance results are presented in
section 4. We then discuss related work in se&iand conclude our study in section 6.

2. Description of the Compute Platform

For our study we used the Sun Fire cluster at theliter Center of the University of
Aachen, Germany. In this section we provide a Bystem description. For more details see
[11]. The system consists of :

e 16 Sun Fire 6800 nodes with 24 UltraSPARC-III Cogassors and 24GB of shared
memory per node.



* 4 Sun Fire 15K nodes with 72 UltraSPARC-III Cu presors and 144GB of shared
memory in each node.

The UltraSPARC-III Cu processors have a 900MHz lclate. They are superscalar 64-
bit processors with two levels of cache. The L2-afip cache has 8MB for data and
instructions. Each CPU board contains four proaassand their external L2 caches together
with their local memory. The Sun Fire 6800 noddsrad flat memory system, in other words
all memory cells approximately have the same design each processor, with a latency of
about 235ns (local access) and 274ns (remote 3ac@éssSun Fire 15K nodes provide a cc-
NUMA memory system where data locality is importafhe latency for memory access
within a board is about 248ns and remote accesa Hatency of approximately 500ns, as
measured by pointer chasing. Switched Gigabit E#te(GE) is used to interconnect the
SMP nodes. Furthermore, two tightly coupled cliustafr eight Sun Fire 6800 systems are
formed by interconnecting them with a proprietaighkspeed Sun Fire Link (SFL) network.
The Sun Fire Link is a new low-latency system aredwork that provides the high
bandwidth needed to combine large SMP servers antmapability cluster. The network
hardware exports a remote shared memory (RSM) mibdélsupports low latency kernel
bypass messaging. The Sun MPI library uses the R8&tface to implement a highly
efficient memory-to-memory messaging protocol inickhthe library directly manages
buffers and data structures in remote memory. aldsvs flexible allocation of buffer space
to active connections, while avoiding resource eotibn that could otherwise increase
latencies. The Sun Fire Link network achieves MRé&ri-node bandwidths of almost three
Gigabytes per second and MPI ping-pong latenciel®wasas 3.7 microseconds [10]. This
compares to a latency of at least 100 microsecandsa maximum bandwidth of about 100
Megabytes per second when using GE.

For our study we used four Sun Fire 6800 nodescardSun Fire 15K node.

3. Benchmark I mplementations

We used the Block Tridiagonal (BT) benchmark frdma t
NAS Parallel Benchmarks (NPB) [1] for our comparati
study. The BT benchmark solves three systems o&temns
resulting from an approximate factorization thatalgples the
X, ¥, and z dimensions of the 3-D Navier-Stokesagiqus.
These systems are block tridiagonal consisting>& Blocks.
Each dimension is swept sequentially as depictdéignre 1.
We evaluated four different parallelization apptues One
based on using MPI, one based on OpenMP and twadhyl
(MPI+OpenMP) strategies.

The MPI implementation of BT employs a multi-pactit
[2] in 3-D to achieve load balance and coarse-gdhin
communication. In this scheme, processors are niapp& Figure 1: Structure of the BT
sub-blocks of points of the grid such that the bldeks are benchmark.
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evenly distributed along any direction of 3lol 1] 2
solution. The blocks are distributed such that

for each sweep direction the processes can st'g\{}n c / 21 3] 0] 1
working in parallel. Throughout the sweep inpoints_> I
one direction, each processor starts working on \ 1j213]0

its sub-block and sends partial solutions to the ol 11 21| 3
next processor before going into the next stage.
An example for one sweep direction of a 2
case is illustrated in Figure 2. The 2-D dome

is divided into squares. The number with
each square indicates the process number of thero@ommunications occur at the sync
points as indicated by gray lines in Figure 2. VBeduthe code as distributed in the NPB2.3,
but employed several optimizations to reduce thenorg requirements. The optimizations
we performed are similar to those described in [8]the following we will refer to this
implementation as BT MPI.

The OpenMP implementation is based on the versiescribed in [3]. OpenMP
directives are placed around the time consumingroudst loops. No directive nesting is
employed. We will refer to this implementation as 8MP.

We use two hybrid implementations based on diffedata distribution strategies. The
first hybrid MP1/OpenMP implementation is basedtba versions described in [3] but uses a
mixed multi-dimensional parallelization strategy€elparallelization in one of the dimensions
is achieved by using message-passing with a onerdilmnal domain decomposition in the
z-dimension. The second level of parallelism isieed by inserting OpenMP directives on
the loops in the y-dimension. Code segments fon bottines are given in Figure 3. Since
the data is distributed in the z-dimension, thd t@lz_sol ve requires communication

sweep
directicn

Figure 2: The multi-partition scheme in 2-D.

subroutine y_sol ve

' $onp parall el
do k=k_I ow, k_hi gh
synchroni ze nei ghbor threads
' $onmp do
do j =1, ny
do i =1, nx
rhs(i,j,k)=rhs(i,j-1,k)
+ ...
enddo
enddo
synchroni ze nei ghbor threads
enddo

subroutine z_solve

' $onp parallel do
do j =1, ny
call receive
do k=k_I ow, k_hi gh

do i=1, nx
rhs(i,j,k)=rhs(i,j,k-1)
+ ...
enddo
enddo
call send
enddo

Figure 3: Code segments demonstrating the tigatastion between MPI and OpenMP is routines
y_sol ve (left) andz_sol ve (right) of BT Hybrid V1.




within a parallel region. The routing_sol ve contains data dependences on the y-
dimension, but can be parallelized by employingefpifed thread execution. We refer to this

implementation as BT Hybrid V1.

The second hybrid implementation s :

based th d din BT MPI tdo ib =1, nblock

ased on the code as used in , PUtCo1 | recel ve
with OpenMP directives inserted on the! $onp paral l el do
outermost loops in the time consuming do j=j _low, j _high
routines. A code segment is shown [in do i =i :l ow, i _hi gh
Figure 4. All communication occurg do k._k.—l ow, k_hi _gh_

tside of th llel . dth . [ hs(i,j,k)=fac(i,]j,k-1)
ou3|.e9 e paralle reg|o.ns and there| is +fac (i,j,k+1). ..
no pipelined thread execution. In each |of enddo
the solver routines, there is one dimension enddo
where OpenMP directives are placed on a enddo
distributed dimension. Note that BT Hybrid cal | send
V2, without enabling the Openmp €nd do
directives, is identical to the pure MRI

implementation.

Figure 4: Code segment of routinesol ve

in BT Hybrid V2.
4. Timing Results

We tested our implementations of the benchmarkhagetdifferent configurations, all of
them running Solaris 9, update 2:
Four Sun Fire 6800 (SF-6800) nodes connected lmnaBe Link (SFL).
Four Sun Fire 6800 (SF-6800) nodes connected hgab® Ethernet (GE).
One Sun Fire 15K (SF-15K) node.
We used the Sun ONE Studio 8 Fortran 95 compileronder to obtain clean and
reproducible performance measurements, we had s¥elaccess to the Sun Fire systems.
For the hybrid codes we explicity bound all threatb separate processors with the
processor _bi nd system call. We report the timings for 20 itenasioof a class A
benchmark corresponding to a problem size of 64&84yid points.

4.1. Timing Comparison of the Benchmark | mplementations

In this section we compare the scalability of eatthe implementations. For the hybrid
implementations we report the best timings achiewdtn varying the number of MPI
processes and threads. The results are shown ureSido and 6. The total number of
available CPUs on the SF-6800 cluster is 96 anthersF-15K node 72 CPUs are available.
Some of our implementations require the number 81 Brocesses to be square. Therefore,
we report timings for up to 81 CPUs on the SF-68&ter and 64 CPUs on the SF-15K
node.



BT Class A SF-6800 (Sun Fire Link) BT CLASS A SF-6800 (GE)

OBT OMP
OBT MPI 100 +
B BT Hybrid V1
OBT Hybrid V2
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Figure 5: Timings for 20 iterations of BT Class A @ four-node SF 6800 cluster. For a small numb@RiJs, the
hybrid codes performed best employing only oneatinger MPI process. For 64 CPUs and the slower éhank,
the best timing for BT Hybrid V1 was achieved usit§ MPI processes and 4 MPI processes for BT HW#d
For 81 CPUs, the best timings for both hybrid codlese achieved using 16 MPI processes with 5 tlsreadh,
employing only 80 CPUs.

The pure MPI implementation shows the

best scalability for the configurations with a BT Class A on SF-15K
fast interconnect such as the Sun Fire Link 100 OBT OMP
(SFL) and shared memory on the SF-15K. i DBT MPI

The good performance is due to the carefully
hand-optimized work distribution and

B BT Hybrid V1
BT Hybrid V2
10
synchronization resulting from the multi-
partition scheme. While the OpenMP I:I‘I-l
implementation also shows good scalability, 1 L ‘ ‘ ‘ ‘
4 16 36 64

it has the following disadvantages when !
compared to the MPI implementation:

* OpenMP parallelization requires a shared_ o . _
address space which limits scalability toFlgure 6: Tlmlngs for 20 |t§rat|ons of BT Class A o
the Sun Fire 15K node with 72 CPUs.

the number of CPUs within one SMP
node, which is 24 for the SF-6800 and 72 for SF-15K

Time in seconds

Number of CPUs

* The OpenMP directives are placed only on the olaoi@ps within a loop nest (in other
words, no nested parallelism is employed). Thigricts the scalability to number of
inner grid points in one dimension, which is 62tfee Class A problem size.

When using the Gigabit Ethernet and a large nunobeZPUs )and consequently a larger
number of SMP nodes), the scalability of the MPpiementation decreases. In this case, the
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hybrid implementations are advantageous. We wsitass the reason for this in the following
section.

4.2. Comparing Different Processesand Thread Combinationsfor Hybrid Codes

When using the fast Sun Fire Link network on the68B0 cluster or the shared memory
available on the SF-15K, the hybrid codes perfornbedt when using as many MPI
processes as possible. Only in cases where theapnogfructure limits the number of MPI
processes that can be employed was is advantagease multiple threads per process to
exploit extra parallelism. The situation is
different for a slower GE network. Here it
was in some cases beneficial to use .
smaller number of MPI processes anc
increase the number of threads pe
process. To understand this behavior wt
will discuss the case of using 64 CPUs
across four SF-6800 nodes. The effects ¢
varying the number of MPI processes anc '
OpenMP threads are shown in Figure 7
The combination of MPI processes anc
threads is indicated as NPxNT, where NF
is the number of processes and NT is the
number of threads per process. Figure 7: Effect of varying numbers of MPI

When using the Sun Fire Linkprocesses and threads on the execution time for 20
interconnect, ne thread per MPI procetiterations. Hybrid V2 can not be run on 64 MPI
yielded the best performance. For the Gprocesses.
interconnect it was advantageous to use a
smaller number of MPI processes with multiple thseaNote that Hybrid V1 can not be run
with 64 MPI processes, since there are only 62 goidts in each of the spatial dimensions
and the implementation requires at least 2 gridtsgier MPI process.

As mentioned earlier, BT Hybrid V1 employs a 1-Daddistribution in the z-dimension.
Communication occurs in routiree_sol ve within a parallel region. Each thread exchanges
partially updated data with two neighbors. The ami@f data sent by each process remains
the same regardless of the total number of prosassed. Each process communicates data
with two neighboring processes.

In BT Hybrid V2 the number of messages sent in eterhtion by each process depends
on the total number of processes. Increasing thebeu of processes increases the number of
messages per process and decreases the length ofedsage. The number of threads per
process does not influence the communication pettesince all communication occurs
outside of the parallel regions. Due to the 3-Daddistribution, each process sends messages
to six neighboring processes. For the problem sfzelass A, BT Hybrid V2 saturates the
bandwidth provided by the Gigabit Ethernet (GE) wimeore than four MPI processes are
used. If 64 MPI processes are employed, BT Hyb2do¥comes completely communication

BT Class A on 64 CPUs on 4 SF-6800 nodes

W Hybrid V1

0 Hybrid V2

ds

Ime In secon

OFRP NWAMOUION
IR L

T

©
b:\_'\r

MPI Processes x OpenMP Threads
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bound for the case of the GE network. Two paraiehmunications are sufficient to saturate
the bandwidth of the connection, whereas it takekeast eight simultaneous transfers to
saturate the bandwidth of the Sun Fire Link, as besn measured with the Pallas MPI
benchmarks [4].

In BT Hybrid V1 the interaction between MPI and @pH° is more tightly coupled than
in BT Hybrid V2. MPI calls are made from within pdlel regions and threads from different
MPI processes have to synchronize with each otflrs greatly increases overhead
introduced by OpenMP such as barrier synchronigatid/e have also noticed lock
contention when multiple threads make calls toM# library, indicating that these calls get
serialized in order to make them thread-safe. Hasds to the conclusion that increasing the
number of threads in BT Hybrid V1 not only incremdbe OpenMP overhead, but also
increases the time spent in MPI calls. These prnobldo not occur in BT Hybrid V2. While
the use of OpenMP directives introduces the usuathead involved with the forking and
joining of threads and thread barrier synchronizatit the end of parallel regions, there is no
negative effect on the MPI parallelization. In Tald we have summarized the MPI and
OpenMP characteristics for the runs from Figure 7.

Total #bytes | #sends avg. msg. length  OpenMP  MPI
BT V1 4x16 157,728,000 14,880 10,600 bytes 23% 25%
BT V1 16x4 630,912,000 59,520 10,600 bytes 17% 4%
BT V2 4x16 111,705,600 960 116,360 bytes 15% 7%
BT V2 16x4 352,435,200 7,680 45,890 bytes 5% 19%
BT V2 64x1 814,080,000 61,440 13,253 bytes 0% | 125%

Table 1: Summary of MPI and OpenMP characterigticshe hybrid codes. The last t
columns indicate the percentage of time spent inl M&ls and OpenMPbarrie
synchronization versus the user CPU time.

We conclude that Hybrid V1 can employ more MPI @sses than Hybrid V2 before
saturating the GE network. The overhead introdumethcreasing the number of threads per
process is greater for Hybrid V1 than for V2, whishdue to the tight interaction between
MPI and OpenMP.

4.3. Usage of Multiple SM P Nodes

In Figure 8 we show timings for BT Hybrid V2 for T8?Us when running on 1, 2, and 4
SMP nodes. We compare runs using only one threadsd process (16x1) and runs
employing four processes with four threads eacle WPl processes are distributed evenly
between the SMP nodes. For the relatively smallbramof CPUs it was always best to use
only one thread per MPI process for the Fire Liskell as the GE interconnect. We observe



that using the Sun Fire Link (SFL) is as fast as

using the shared memory within one of the BT Hybrid V2 on 16 CPUs on SF-6800
SMP nodes. o [miex (s
2 | |O4x4(sF)
5. Related Work 2 &) B16x1(GH
. S i ax4 (G
There are many published reports on theg i (e 7
comparison  of  different  programming = , | [l %
. (3]
paradigms. We can only name a few of them AE 2 %
. . e
comparison of message passing versus shared? 1 %

. . . 0 - i I 11| 5550
memory access is given in [8] and [Q]. The 1 Node > Nodes 4 Nodes
studies focus on shargd memory a.lrchltectu es. Number of SMP Nodes
Some aspects of hybrid programming on SMP

clusters are discussed in [7]. An evaluation of

. . . . Figure 8: Timings for 20 iterations of BT Hybrid
Mlz[jsismg the Sun Fire Link network is given, , 16 SF-6300 CPUs.
in .

6. Conclusionsand Future Work

We have run several implementations of the same G&irhmark code employing
different parallelization paradigms on a clusterSMiP nodes. When using the high-speed
interconnect or shared memory, the pure MPI pamadigned out to be the most efficient. A
slow network lead to a decrease in the performaridie pure MPI implementation. The
hybrid implementations showed different sensitivity network speed, depending on the
parallelization strategy employed. The benefithaf hybrid implementations was visible on a
slow network.

The hybrid parallelization approach is suitable fange applications with an inherent
multilevel structure, such as multi-zone codes. €odes like the BT benchmark, where
parallelization occurs only on one or more of thatml dimensions, the use of either process
level parallelization or OpenMP is, in general, mappropriate. We plan to conduct a study
using multi-zone versions of the NAS Parallel Banarks [12], which are more suitable for
the exploitation of multilevel parallelism.
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